Stabilization of nonlinear systems using receding-horizon control schemes : a parametrized approach for fast systems /

While conceptually elegant, the generic formulations of nonlinear model predictive control are not ready to use for the stabilization of fast systems. Dr. Alamir presents a successful approach to this problem based on a co-operation between structural considerations and on-line optimization. The bal...

Full description

Bibliographic Details
Main Author: Alamir, Mazen
Format: Book
Language:English
Published: London : Springer, c2006
Series:Lecture notes in control and information sciences ; 339
Lecture notes in control and information sciences ; 339
Lecture notes in control and information sciences 339
Subjects:
LEADER 08767nam a2200733 a 4500
001 ef037d3f-f502-4d5a-86d3-33e87de5d411
005 20240830000000.0
008 060405s2006 enka b 001 0 eng
010 |a  2006926659 
010 |a ^^2006926659 
015 |a GBA640934  |2 bnb 
016 7 |a 013448177  |2 Uk 
020 |a 1846284708 (pbk.) 
020 |a 1846284716 (ebk.) 
020 |a 9781846284700 (pbk.) 
020 |a 9781846284717 (ebk.) 
024 3 |c 9781846284700 (pbk.) 
024 3 |c 9781846284717 (ebk.) 
029 1 |a OHX  |b har060049313 
035 |a (MCM)001388529MIT01 
035 |a (OCoLC)67375398 
035 |a (OCoLC-I)275825563 
035 |a (OCoLC-M)67375398 
035 |a 5922321 
040 |a UKM  |c UKM  |d BAKER  |d OHX  |d BWKUK  |d DLC  |d YDXCP  |d LVB  |d MYG  |d OrLoB-B 
040 |a UKM  |c UKM  |d BAKER  |d OHX  |d BWKUK  |d DLC 
040 |a UKM  |c UKM  |d BAKER  |d OHX  |d BWKUK 
042 |a lccopycat 
049 |a MYGG 
050 4 |a TJ213  |b .A35 2006 
050 0 0 |a TJ213  |b .A35 2006 
050 0 0 |a TJ213.A35 2006 
082 0 4 |a 629.836  |2 22 
100 1 |a Alamir, Mazen  |0 http://viaf.org/viaf/60238416 
100 1 |a Alamir, Mazen 
245 1 0 |a Stabilization of nonlinear systems using receding-horizon control schemes :  |b a parametrized approach for fast systems /  |c Mazen Alamir 
260 |a London :  |b Springer,  |c c2006 
300 |a xvii, 308 p. :  |b ill. ;  |c 24 cm 
336 |a text  |b txt  |2 rdacontent 
337 |a unmediated  |b n  |2 rdamedia 
338 |a volume  |b nc  |2 rdacarrier 
440 0 |a Lecture notes in control and information sciences ;  |v 339 
490 1 |a Lecture notes in control and information sciences ;  |v 339 
504 |a Includes bibliographical references (p. [301]-306) and index 
505 0 |a Cover -- Contents -- Part I: Generic Framework -- 1 Definitions and Notation -- 1.1 System-Related Definitions -- 1.2 Open-Loop-Control-Related Definitions -- 1.3 Open-Loop-Trajectories-Related Definitions -- 1.4 Further Notation -- 2 The Receding-Horizon State Feedback -- 2.1 The Strategy Most Commonly Used by Humans -- 2.2 The Ingredients of a Receding-Horizon Control Scheme -- 2.3 The Receding-Horizon State Feedback -- 2.4 Existence of Solutions -- 2.5 The Stability Issue -- 3 Stabilizing Schemes with Final Equality Constraint on the State -- 3.1 Some Assumptions and Preliminary Results -- 3.2 Fixed Prediction Horizon Formulations with Final Equality Constraint on the State -- 4 Stabilizing Formulations with Free Prediction Horizon and No Final Constraint on the State -- 4.1 Preliminary Results -- 4.2 A Contractive Free Prediction Horizon Formulation for Use in a Hybrid Scheme -- 4.3 A Contractive Self-Contained Free Final-Horizon Formulation -- 4.4 Generalization -- 5 General Stabilizing Formulations for Trivial Parametrization -- 5.1 Introduction -- 5.2 Definitions and Notation -- 5.3 Sufficient Conditions for Asymptotic Stability -- 5.4 A Quick Survey of Existing Stabilizing Formulations -- 5.5 Inverse Optimality -- 5.6 Current Issues: Distributing the Optimization over Real Time -- 6 Limit Cycles Stabilizing Receding-Horizon Formulation for a Class of Hybrid Nonlinear Systems -- 6.1 Problem Statement -- 6.2 Recall on Partial Feedback Linearization -- 6.3 The Proposed Receding-Horizon Feedback Scheme -- 6.4 Illustrative Examples -- 6.5 Conclusion -- 7 Generic Design of Dynamic State Feedback Using Receding-Horizon Schemes -- 7.1 Intuitive Presentation of the Main Idea -- 7.2 Rigorous Statement of the Dynamic State Feedback -- 7.3 Conclusion -- Part II: Application Examples -- Introduction to Part II -- 8 Swing-Up Mechanical Systems -- 8.1 Swing-Up and Stabilization of a Twin-Pendulum System -- 8.2 Swing-Up and Stabilization of a Reaction-Wheel Pendulum Under Constraints -- 8.3 Swing-Up and Stabilization of an Inverted Pendulum on a Cart -- 8.4 Swing-Up and Stabilization of a Double Inverted Pendulum on a Cart -- 8.5 Conclusion -- 9 Minimum-Time Constrained Stabilization of Nonholonomic Systems -- 9.1 Stabilisation of Nonholonomic Systems in Chained Form -- 9.2 Stabilisation of a Class of Nonholonomic Systems: Application to the Snakeboard Example -- 10 Stabilization of a Rigid Satellite in Failure Mode -- 10.1 The Model of a Satellite in Failure Mode -- 10.2 Designing Efficiently Computable Steering Trajectories -- 10.3 Numerical Experiments -- 10.4 State Feedback Definition -- 10.5 Closed-Loop Simulations -- 10.6 Conclusion -- 11 Receding-Horizon Solution to the Minimum-Interception-Time Problem -- 11.1 System Modelling and Problem Statement -- 11.2 Intuitive Presentation of the Controller Design -- 11.3 Explicit Definition of the Feedback Law -- 11.4 Simulation Results -- 11.5 Conclusion -- 12 Constrained Stabilization of a PVTOL Aircraft -- 12.1 The Model of the PVTOL Aircraft -- 12.2 Generation of Admissible Open-Loop Steering Trajectories -- 12 
505 0 0 |g 1  |t Definitions and notation --  |g 2.  |t The receding-horizon state feedback --  |g 3.  |t Stabilizing schemes with final equality constraint on the state --  |g 4.  |t Stabilizing formulations with free prediction horizon and no final constraint on the state --  |g 5.  |t General stabilizing formulations for trivial parametrization --  |g 6.  |t Limit cycles stabilizing receding-horizon formulation for a class of hybrid nonlinear systems --  |g 7.  |t Generic design of dynamic state feedback using receding-horizon schemes --  |g 8.  |t Swing-up mechanical systems --  |g 9.  |t Minimum-time constrained stabilization of nonholonomic systems --  |g 10.  |t Stabilization of a rigid satellite in failure mode --  |g 11.  |t Receding-horizon solution to the minimum-interception-time problem --  |g 12.  |t Constrained stabilization of a PVTOL aircraft --  |g 13.  |t Limit cycle stabilizing receding-horizon controller for the planar biped RABBIT. 
520 |a While conceptually elegant, the generic formulations of nonlinear model predictive control are not ready to use for the stabilization of fast systems. Dr. Alamir presents a successful approach to this problem based on a co-operation between structural considerations and on-line optimization. The balance between structural and optimization aspects of the method is dependent on the system being considered so the many examples aim to transmit a mode of thought rather than a ready-to-use recipe; they include: - double inverted pendulum; - non-holonomic systems in chained form; - snake board; - missile in intercept mission; - polymerization reactor; - walking robot; - under-actuated satellite in failure mode. In addition, the basic stability results under receding horizon control schemes are revisited using a sampled-time, low-dimensional control parameterization that is mandatory for fast computation and some novel formulations are proposed which offer promising directions for future research 
530 |a Also available online via the World Wide Web; access restricted to licensed sites/users 
596 |a 31 
650 0 |a Automatic control  |x Mathematical models 
650 0 |a Nonlinear control theory 
650 7 |a Automatic control  |x Mathematical models  |2 fast 
650 7 |a Nonlinear control theory  |2 fast 
776 |w (OCoLC)262691387 
830 0 |a Lecture notes in control and information sciences ;  |v 339 
830 0 |a Lecture notes in control and information sciences  |v 339 
999 1 0 |i ef037d3f-f502-4d5a-86d3-33e87de5d411  |l a6754386  |s US-CST  |m stabilization_of_nonlinear_systems_using_receding_horizon_control_sche_____2006_______sprina________________________________________alamir__mazen______________________p 
999 1 0 |i ef037d3f-f502-4d5a-86d3-33e87de5d411  |l 990013885290106761  |s US-MCM  |m stabilization_of_nonlinear_systems_using_receding_horizon_control_sche_____2006_______sprina________________________________________alamir__mazen______________________p 
999 1 0 |i ef037d3f-f502-4d5a-86d3-33e87de5d411  |l 990101936430203941  |s US-MH  |m stabilization_of_nonlinear_systems_using_receding_horizon_control_sche_____2006_______sprina________________________________________alamir__mazen______________________p 
999 1 0 |i ef037d3f-f502-4d5a-86d3-33e87de5d411  |l 5922321  |s US-NIC  |m stabilization_of_nonlinear_systems_using_receding_horizon_control_sche_____2006_______sprina________________________________________alamir__mazen______________________p 
999 1 1 |l a6754386  |s ISIL:US-CST  |t BKS  |a SAL3 STACKS  |b 36105114457059  |c TJ213 .A35 2006  |d LC  |x STKS-MONO  |y 36105114457059  |p LOANABLE 
999 1 1 |l 990013885290106761  |s ISIL:US-MCM  |t BKS  |a LSA OCC  |b 39080028431374  |c TJ213.A35 2006  |d 0  |x BOOK  |y 23459164620006761  |p UNLOANABLE 
999 1 1 |l 990101936430203941  |s ISIL:US-MH  |t BKS  |a CAB HD  |b AS3LK2  |c QA402.3 .L4 vol. 339  |d 0  |x 01 BOOK  |y 232110039400003941  |p LOANABLE 
999 1 1 |l 5922321  |s ISIL:US-NIC  |t BKS  |a uris  |b 31924104694413  |c TJ213 .A35 2006  |d lc  |k 1  |x Book  |y 7c98a6f0-4289-491a-86c8-5245b626b00c  |p LOANABLE