Modeling Indoor Air Pollution

Bibliographic Details
Main Author: Pepper, Darrell W
Other Authors: Carrington, David B
Format: Book
Language:English
Published: Singapore : World Scientific Publishing Company, 2009
Edition:1st ed
Subjects:
Table of Contents:
  • Intro
  • Contents
  • Acknowledgements
  • Preface
  • 1. Introduction
  • 1.1 What is Indoor Air Pollution
  • 1.2 Ventilation Systems
  • 1.3 Exposure Risks
  • 1.4 Numerical Modeling of Indoor Air Flow.
  • 1.5 Comments
  • 2. Fluid Flow Fundamentals
  • 2.1 Conservation Equations
  • 2.2 Ideal Fluids
  • 2.2.1 Conformal mapping.
  • 2.2.2 Schwarz-Christoffel transform.
  • 2.2.3 Numerical mapping.
  • 2.2.4 Superposition for stream functions.
  • 2.3 Turbulence.
  • 2.4 Species Transport.
  • 2.5 Comments
  • 3. Contaminant Sources
  • 3.1 Types of Contaminants
  • 3.2 Units
  • 3.3 Materials
  • 3.4 Typical Operations.
  • 3.5 The Diffusion Equation.
  • 3.6 Diffusion in Air
  • 3.7 Evaporation of Droplets
  • 3.8 Resuspension of Particulate
  • 3.9 Coagulation of Particulate
  • 3.10 Comments
  • 4. Assessment Criteria
  • 4.1 Exposure
  • 4.2 Economics
  • 4.3 Comments
  • 5. Simple Modeling Techniques
  • 5.1 Analytical Tools
  • 5.2 Advection Model
  • 5.3 Box Model.
  • 5.4 Comments
  • 6. Dynamics of Particles, Gases and Vapors
  • 6.1 Drag, Shape, and Size of Particles
  • 6.2 Particle Motion.
  • 6.2.1 Deposition of particulate with aerodynamic diameters &gt
  • 1μ by settling
  • 6.2.2 Particle motion in electrostatic field.
  • 6.2.3 Particle motion induced by temperature gradients.
  • 6.2.4 Thermophoretic motion for gases and particles with diameter less than the molecular mean free path
  • 6.2.5 Thermophoretic transport for particles with diameter greater than the molecular mean free path
  • 6.3 Particle Flow in Inlets and Flanges.
  • 6.4 Comments
  • 7. Numerical Modeling - Conventional Techniques
  • 7.1 Finite Difference Method
  • 7.1.1 Explicit
  • 7.1.2 Implicit
  • 7.1.3 Upwinding.
  • 7.2 Finite Volume Method
  • 7.2.1 FDM.
  • 7.2.2 FVM.
  • 7.3 The Finite Element Method
  • 7.3.1 One-dimensional elements.
  • 7.3.1.1 Linear element
  • 7.3.1.2 Quadratic and higher order elements
  • 7.3.2 Two-dimensional elements
  • 7.3.2.1 Triangular elements
  • 7.3.2.2 Quadrilateral elements.
  • 7.3.2.3 Isoparametric elements
  • 7.3.3 Three-dimensional elements
  • 7.3.4 Quadrature.
  • 7.3.5 Time dependence.
  • 7.3.6 Petrov-Galerkin method.
  • 7.3.7 Mesh generation.
  • 7.3.8 Bandwidth.
  • 7.3.9 Adaptation.
  • 7.3.9.1 Element subdivision.
  • 7.4 Further CFD Examples
  • 7.5 Model Verification and Validation
  • 7.6 Comments
  • 8. Numerical Modeling - Advanced Techniques
  • 8.1 Boundary Element Method.
  • 8.2 Lagrangian Particle Technique
  • 8.3 Particle-in-cell.
  • 8.4 Meshless Method
  • 8.4.1 Application of meshless methods
  • 8.4.1.1 Smoothed particle hydrodynamics (SPH) techniques including Kernel Particle Methods (RKPM), and general kernel reproduction methods (GKR)
  • 8.4.1.2 Meshless Petrov-Galerkin (MLPG) methods including moving least squares (MLS), point interpolation methods (PIM), and hp-clouds.
  • 8.4.1.3 Local radial point interpolation methods (LRPIM) using finite difference representations
  • 8.4.1.4 Radial basis functions (RBFs)
  • 8.4.2 Example cases - Heat Transfer
  • 8.4.2.1 Heat transfer in a 2-D plate.
  • 8.4.2.2 Singular point in a 2-D domain
  • 8.4.2.3 Heat transfer within an irregular domain
  • 8.4.2.4 Natural Convection
  • 8.5 Molecular Modeling
  • 8.6 Boundary Conditions for Mass Transport Analysis.
  • 8.7 Comments
  • 9. Turbulence Modeling
  • 9.1 Brief History of Turbulence Formulation
  • 9.2 Physical Model
  • 9.2.1 Turbulent flow
  • 9.2.2 Two-equation turbulence closure models
  • 9.2.2.1 Two-equation k-ε
  • 9.2.2.2 Two-equation k-w
  • 9.2.3 Large Eddy Simulation (LES).
  • 9.2.4 Direct Numerical Simulation (DNS)
  • 9.2.5 Turbulent transport of energy or enthalpy.
  • 9.2.6 Derivation of enthalpy transport
  • 9.2.7 Turbulent energy transport
  • 9.2.8 Turbulent transport species
  • 9.2.9 Coupled fluid-thermal flow
  • 9.3 Numerical Modeling
  • 9.3.1 Projection algorithm
  • 9.3.2 Finite volume approach
  • 9.3.3 Finite element approach
  • 9.3.3.1 Weak forms of the governing equations.
  • 9.3.3.2 Matrix equations.
  • 9.3.3.3 Time advancement of the explicit/implicit matrix equations
  • 9.3.3.4 Mass lumping
  • 9.3.3.5 General numerical solution.
  • 9.4 Stability and Time Dependent Solution
  • 9.5 Boundary Conditions.
  • 9.5.1 Boundary conditions for velocity under decomposition
  • 9.5.1.1 Viscous boundary condition for velocity
  • 9.5.2 Boundary conditions for pressure and velocity correction.
  • 9.5.3 Boundary conditions for turbulent kinetic energy and specific dissipation rate
  • 9.5.4 Boundary conditions for thermal and species transport
  • 9.5.5 Thermal and species flux calculation in the presence of Dirichlet boundaries
  • 9.6 Validation of Turbulence Models
  • 9.7 Comments
  • 10. Homeland Security Issues
  • 10.1 Introduction.
  • 10.2 Potential Hazards
  • 10.2.1 Prevention and protection.
  • 10.3 A Simple Model
  • 10.3.1 Example - analytical model of anthrax dispersion:
  • 10.3.2 Example - numerical model of anthrax dispersion:
  • 10.4 Other Indoor Air Quality Models
  • 10.4.1 CONTAM 2.4 (NIST).
  • 10.4.2 I-BEAM (EPA)
  • 10.4.3 COMIS-MIAQ (APTG-LBNL)
  • 10.4.4 FLOVENT (Flomerics, Inc.)
  • 10.5 Comments
  • Appendix A Diffusion Coefficients in Gas
  • Appendix B 2-D Office Simulations: COMSOL and ANSWER Software
  • B.1 COMSOL Model - Report Output
  • B.1.1 Model properties
  • B.1.2 Geometry
  • B.1.2.1 Geom1
  • B.1.2.2 Point mode
  • B.1.2.3 Boundary mode
  • B.1.2.4 Subdomain mode
  • B.1.3 Geom 1
  • B.1.4.1 Mesh statistics
  • B.1.5 Application mode: Incompressible Navier-Stokes
  • B.1.5.1 Application mode properties
  • B.1.5.2 Variables
  • B.1.5.3 Boundary settings
  • B.1.5.4 Subdomain settings
  • B.1.6 Application mode: Convection and diffusion
  • B.1.6.1 Application mode properties
  • B.1.6.2 Variables
  • B.1.6.3 Boundary settings
  • B.1.6.4 Subdomain settings
  • B.1.7 Solver settings
  • B.1.7.1 Direct (PARDISO)
  • B.1.7.2 Stationary
  • B.1.7.3 Advanced
  • B.1.8 Postprocessing
  • B.2 ANSWER Model
  • B.2.1 Answer input deck
  • B.2.2 Answer solutions
  • Bibliography
  • Index