Unmanned aircraft design : a review of fundamentals /

This book provides fundamental principles, design procedures, and design tools for unmanned aerial vehicles (UAVs) with three sections focusing on vehicle design, autopilot design, and ground system design. The design of manned aircraft and the design of UAVs have some similarities and some differen...

Full description

Bibliographic Details
Main Author: Sadraey, Mohammad H. (Author)
Format: Book
Language:English
Published: [San Rafael, California] : Morgan & Claypool, 2017
Series:Synthesis digital library of engineering and computer science
Synthesis lectures on mechanical engineering ; #4
Subjects:
Table of Contents:
  • Part I
  • 1. Design fundamentals
  • 1.1 Introduction
  • 1.2 UAV classifications
  • 1.3 Design project planning
  • 1.4 Decision making
  • 1.5 Design criteria, objectives, and priorities
  • 1.6 Feasibility analysis
  • 1.7 Design groups
  • 1.8 Design process
  • 1.9 Systems engineering approach
  • 1.10 Conceptual design
  • 1.11 Preliminary design
  • 1.12 Detail design
  • 1.13 Design review, evaluation, and feedback
  • 1.14 Questions
  • 2. Design disciplines
  • 2.1 Introduction
  • 2.2 Aerodynamic design
  • 2.3 Structural design
  • 2.4 Propulsion system design
  • 2.5 Landing gear design
  • 2.6 Mechanical/power transmission systems design
  • 2.7 Control surfaces design
  • 2.8 Questions
  • Bibliography
  • Author biography
  • Part II.
  • 3. Fundamentals of autopilot
  • 3.1 Introduction
  • 3.2 Primary subsystems of an autopilot
  • 3.3 Dynamic modeling
  • 3.4 UAV dynamics
  • 3.5 Aerodynamic forces and moments
  • 3.6 Stability and control derivatives
  • 3.7 Transfer function
  • 3.8 State-space model
  • 3.9 Linearization
  • 3.10 Autopilot design process
  • 3.11 Questions
  • 4. Control system design
  • 4.1 Introduction
  • 4.2 Fundamentals of control systems
  • 4.3 UAV control architecture
  • 4.3.1 Control categories
  • 4.3.2 Cruise control
  • 4.4 Flight control requirements
  • 4.4.1 Longitudinal control requirements
  • 4.4.2 Roll control requirements
  • 4.4.3 Directional control requirements
  • 4.5 PID controller
  • 4.6 Optimal control-linear quadratic regulator (LQR)
  • 4.7 Robust control
  • 4.8 Digital control
  • 4.9 Stability augmentation
  • 4.10 Autonomy
  • 4.10.1 Classification
  • 4.10.2 Detect (I.E., sense)-and-avoid
  • 4.10.3 Automated recovery
  • 4.10.4 Fault monitoring
  • 4.10.5 Intelligent flight planning
  • 4.10.6 Manned-unmanned teaming
  • 4.11 Control system design process
  • 4.12 Questions
  • 4.13 Problems
  • 5. Navigation system design
  • 5.1 Introduction
  • 5.2 Coordinate systems
  • 5.3 Inertial navigation system
  • 5.4 Global positioning system
  • 5.5 Position fixing navigation
  • 5.5.1 Map reading
  • 5.5.2 Celestial navigation
  • 5.6 Inertial navigation sensors
  • 5.6.1 Accelerometer
  • 5.6.2 Gyroscope
  • 5.6.3 Airspeed sensor
  • 5.6.4 Altitude sensor
  • 5.7 Design considerations
  • 5.8 Questions
  • 6. Guidance system design
  • 6.1 Introduction
  • 6.2 Elements of guidance system
  • 6.3 Guidance laws
  • 6.4 Line-of-sight guidance law
  • 6.5 Formation flight
  • 6.6 Proportional navigation guidance law
  • 6.7 Pursuit guidance law
  • 6.8 Waypoint guidance
  • 6.9 Seeker
  • 6.10 Questions
  • 7. Microcontroller
  • 7.1 Introduction
  • 7.2 Basic fundamentals
  • 7.3 Modules/components
  • 7.4 Flight software
  • 7.4.1 Software development
  • 7.4.2 Operating system
  • 7.4.3 Management software
  • 7.4.4 Microcontroller programing
  • 7.4.5 Software integration
  • 7.4.6 C language
  • 7.4.7 Compiler
  • 7.4.8 ArduPilot
  • 7.4.9 Debugging
  • 7.4.10 Design procedure
  • 7.5 Questions
  • Part III
  • 8. Ground control station
  • 8.1 Introduction
  • 8.2 GCS subsystems
  • 8.3 Human operator in ground station
  • 8.4 Types of ground stations
  • 8.4.1 Handheld controller
  • 8.4.2 Portable GCS
  • 8.4.3 Mobile truck
  • 8.4.4 Central command station
  • 8.5 Communication system
  • 8.6 Design considerations
  • 8.7 Questions
  • 9. Launch and recovery systems
  • 9.1 Introduction
  • 9.2 Fundamentals of launch
  • 9.3 Launcher equipment
  • 9.4 Recovery techniques
  • 9.5 Recovery fundamentals
  • 9.5.1 Parachute
  • 9.5.2 Impact recovery
  • 9.6 Air launch
  • 9.7 Hand launch
  • 9.8 Launch and recovery systems design
  • 9.9 Questions
  • 9.10 Problems
  • 10. Payloads selection/design
  • 10.1 Introduction
  • 10.2 Payload definition
  • 10.3 Cargo or freight payload
  • 10.4 Reconnaissance/surveillance payload
  • 10.4.1 Camera
  • 10.4.2 Radar
  • 10.5 Scientific payloads
  • 10.6 Military payload (weapon)
  • 10.7 Payload installation
  • 10.7.1 Payload location
  • 10.7.2 Payload aerodynamics
  • 10.7.3 Payload-structure integration
  • 10.7.4 Payload stabilization
  • 10.8 Payload control and management
  • 10.9 Payload selection/design considerations
  • 10.10 Questions
  • 10.11 Problems