Visions of the Future : Chemistry and Life Science

Leading young scientists give engaging reviews of their research areas and exciting visions of future developments

Bibliographic Details
Main Author: Thompson, J. M. T
Format: Book
Language:English
Published: Cambridge : Cambridge University Press, 2001
Subjects:
LEADER 05587nam a22003733i 4500
001 9724938a-1dbb-4c93-b72d-e96ef6af3bee
005 20230618000000.0
008 230115s2001 xx o ||||0 eng d
020 |a 9780511156762  |q (electronic bk.) 
020 |z 9780521805391 
035 |a (Au-PeEL)EBL202430 
035 |a (CaPaEBR)ebr10040862 
035 |a (EXLCZ)9917691076100041 
035 |a (MiAaPQ)EBC202430 
035 |a (OCoLC)55641467 
040 |a MiAaPQ  |b eng  |e rda  |e pn  |c MiAaPQ  |d MiAaPQ 
050 4 |a QD39 .V53 2001 
082 0 |a 540 
100 1 |a Thompson, J. M. T 
245 1 0 |a Visions of the Future :  |b Chemistry and Life Science 
264 1 |a Cambridge :  |b Cambridge University Press,  |c 2001 
264 4 |c ©2001 
300 |a 1 online resource (209 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Cover -- Half-title -- Title -- Copyright -- Contents -- Preface -- 1 Laser snapshots of molecular motions -- 1.1 Introduction -- 1.2 The interaction of intense femtosecond laser light with molecules -- 1.3 Femtosecond lasers -- 1.4 Femtosecond spectroscopy of molecular dynamics -- 1.4.1 Ultrafast molecular fragmentation -- 1.4.2 Ultrafast molecular collisions -- 1.4.3 Many-body effects on ultrafast dynamics -- 1.5 What else and what next? A speculative prognosis -- 1.5.1 Attosecond laser pulses -- 1.5.2 Coherent control of molecular dynamics -- 1.6 Further reading -- 2 Enzymology takes a quantum leap forward -- 2.1 Introduction -- 2.2 Enzyme catalysis in the classical world -- 2.3 A role for protein dynamics in classical transfers -- 2.4 Wave-particle duality and the concept of tunnelling -- 2.5 Electron tunnelling in proteins -- 2.6 Transition state theory and corrections for hydrogen tunnelling -- 2.7 Hydrogen tunnelling driven by protein dynamics -- 2.8 Experimental demonstration of vibration-driven tunnelling -- 2.9 Significance of hydrogen tunnelling in enzymes -- 2.10 Enzymology in the future -- 2.11 Further reading -- 3 World champion chemists: people versus computers -- 3.1 Further reading -- 4 Chemistry on the inside: green chemistry in mesoporous materials -- 4.1 Green chemistry -- 4.2 New mesoporous materials -- 4.3 Applications -- 4.4 Future prospects -- 4.5 Further reading -- 5 Diamond thin films: a twenty-first century material -- 5.1 The diamond in history -- 5.2 Chemical vapour deposition -- 5.3 Methods for production of CVD diamond -- 5.4 The chemistry of CVD diamond growth -- 5.5 The substrate material -- 5.6 Nucleation -- 5.7 The CVD diamond film -- 5.8 Applications -- 5.8.1 Cutting tools -- 5.8.2 Thermal management -- 5.8.3 Optics -- 5.8.4 Electronic devices -- 5.8.5 Field emission displays -- 5.8.6 Electrochemical sensors 
505 8 |a 5.8.7 Composite reinforcement -- 5.8.8 Particle detectors -- 5.9 Summary -- 5.10 Further reading -- 6 The secret of Nature's microscopic patterns -- 6.1 The biology of microarchitecture and self-assembly -- 6.1.1 Message and machinery -- 6.1.2 The inertia of natural patterns -- 6.1.3 Mimicking and modelling nature -- 6.2 Consideration of colloidal interactions and self-assembly -- 6.2.1 The unexpected behaviour of tiny objects -- 6.2.2 Creating pattern from instability -- 6.3 Synthetic self-assembled architecture and evolutionary implications -- 6.3.1 An experimental example -- 6.3.2 Of patterns and species -- 6.4 Future applications of biocolloid self-assembly -- 6.5 Further reading -- 7 Skeletal structure: synthesis of mechanics and cell biology -- 7.1 Introduction and historical background -- 7.2 Form and function in bone -- 7.2.1 Bone structure -- 7.2.2 Cells and matrix -- 7.2.3 Bone growth and maintenance -- 7.3 Mechanical regulation of bone structure -- 7.3.1 Adaptation experiments -- 7.3.2 Modelling -- 7.3.3 Imaging -- 7.4 Visions for the future -- 7.5 Further reading -- 8 The making of the virtual heart -- 8.1 Introduction -- 8.1.1 Martians and the Highway Code -- 8.2 The need for computational modelling in bio-medical research -- 8.2.1 What can we learn from Martians? -- 8.2.2 Combined opposites -- 8.3 The Physiome Project -- 8.3.1 The vision -- 8.3.2 The route -- 8.3.3 The tools -- 8.4 The virtual heart -- 8.4.1 Science or fiction? -- 8.4.2 Single cell models -- 8.4.3 Organ models -- 8.4.4 Simulating the ECG -- 8.4.5 Summary: The virtual heart -- 8.5 The utility of virtual organs -- 8.5.1 Added value for research -- 8.5.2 Added value for drug and device development -- 8.5.3 Added value for society -- 8.6 Further reading -- 9 Exploring human organs with computers -- 9.1 Introduction -- 9.2 Making cars -- 9.3 Designing drugs 
505 8 |a 9.4 Bone and skin -- 9.5 Cell interactions -- 9.6 The heart -- 9.7 An ear model -- 9.8 The next 10 years -- 9.9 The year 2020 -- 9.10 The year 2050 -- 9.11 Further reading -- 10 Reverse engineering the human mind -- 10.1 Further reading -- Contributor biographies -- Index 
520 |a Leading young scientists give engaging reviews of their research areas and exciting visions of future developments 
588 |a Description based on publisher supplied metadata and other sources 
650 0 |a Chemistry 
776 0 8 |i Print version:  |a Thompson, J. M. T  |t Visions of the Future: Chemistry and Life Science  |d Cambridge : Cambridge University Press,c2001  |z 9780521805391 
999 1 0 |i 9724938a-1dbb-4c93-b72d-e96ef6af3bee  |l 9977920361703681  |s US-PU  |m visions_of_the_futurechemistry_and_life_science____________________________2001_______cambra________________________________________thompson__j__m__t__________________e