Aircraft aerodynamic design : geometry and optimization /

"Optimal aircraft design is impossible without a parametric representation of the geometry of the airframe. We need a mathematical model equipped with a set of controls, or design variables, which generates different candidate airframe shapes in response to changes in the values of these variab...

Full description

Bibliographic Details
Main Authors: Sóbester, András (Author), Sóbester, András (Author), Forrester, Alexander I. J. (Author)
Format: Book
Language:English
Published: Chichester, England : Wiley, 2015
Series:Aerospace series (Chichester, England)
Subjects:
LEADER 16765nam a2201057 i 4500
001 493c8e0d-269b-41ee-a2dd-8d00eabb99c6
005 20230802000000.0
008 141001t20152015enkao ob 001 0 eng d
016 7 |a 016821799  |2 Uk 
020 |a 0470662573 
020 |a 1118534719 (e-book) 
020 |a 1118534719  |q (e-book) 
020 |a 1118534743  |q (electronic bk.) 
020 |a 1118534743  |q electronic bk 
020 |a 9780470662571 
020 |a 9781118534717 (e-book) 
020 |a 9781118534717  |q (e-book) 
020 |a 9781118534748  |q (electronic bk.) 
020 |a 9781118534748  |q electronic bk 
020 |z 1118534735 
020 |z 9780470662571 
020 |z 9781118534731 
035 |a (CaPaEBR)PALCIDDAebr10941710 
035 |a (CaPaEBR)ebr10941710 
035 |a (OCoLC)893686414  |z (OCoLC)891449986  |z (OCoLC)896838619  |z (OCoLC)961611241  |z (OCoLC)990734260  |z (OCoLC)1055356650 
035 |a (OCoLC)PALCIDDA893686414 
035 |a (OCoLC-I)895090634 
035 |a (OCoLC-M)893686414 
035 |a (PU)7403129-penndb-Voyager 
035 |a 12654257 
040 |a CaPaEBR  |b eng  |e rda  |e pn  |c CaPaEBR 
040 |a E7B  |b eng  |e rda  |c E7B  |d OCLCO  |d DG1  |d CSt 
040 |a E7B  |b eng  |e rda  |e pn  |c E7B  |d OCLCO  |d DG1  |d OCLCF  |d YDXCP  |d UKMGB  |d EBLCP  |d RECBK  |d DEBSZ  |d B24X7  |d COO  |d OCLCQ  |d DG1  |d OCLCQ  |d CNNOR  |d MOR  |d CCO  |d LIP  |d PIFAG  |d ZCU  |d MERUC  |d OCLCQ  |d K6U  |d U3W  |d BUF  |d OCLCQ  |d STF  |d ICG  |d INT  |d OCLCQ  |d G3B  |d TKN  |d OCLCQ  |d DKC  |d OCLCQ  |d UKAHL  |d AUD  |d ERF  |d CSt 
049 |a MAIN 
049 |a STFA 
050 4 |a TL671.6  |b .S58 2015eb 
050 1 4 |a TL671.6  |b .S58 2015eb 
072 7 |a TEC  |x 009000  |2 bisacsh 
082 0 4 |a 629.134/1  |2 23 
084 |a TEC002000  |2 bisacsh 
100 1 |a Sóbester, András,  |e author 
100 1 |a Sóbester, András  |e author 
100 1 |a Sóbester, András,  |e author 
245 1 0 |a Aircraft aerodynamic design :  |b geometry and optimization /  |c András Sóbester, Alexander Forrester 
264 1 |a Chichester, England :  |b Wiley,  |c 2015 
264 4 |c ©2015 
300 |a 1 online resource (265 pages) :  |b illustrations, photographs 
336 |a text  |2 rdacontent 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |2 rdamedia 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |2 rdacarrier 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |2 rdaft 
490 1 |a Aerospace Series 
504 |a Includes bibliographical references and index 
505 0 |a AIRCRAFT AERODYNAMIC DESIGN; Contents; Series Preface; Preface; 1 Prologue; 2 Geometry Parameterization: Philosophy and Practice; 2.1 A Sense of Scale; 2.1.1 Separating Shape and Scale; 2.1.2 Nondimensional Coefficients; 2.2 Parametric Geometries; 2.2.1 Pre-Optimization Checks; 2.3 What Makes a Good Parametric Geometry: Three Criteria; 2.3.1 Conciseness; 2.3.2 Robustness; 2.3.3 Flexibility; 2.4 A Parametric Fuselage: A Case Study in the Trade-Offs of Geometry Optimization; 2.4.1 Parametric Cross-Sections; 2.4.2 Fuselage Cross-Section Optimization: An Illustrative Example 
505 0 0 |g 1  |t Prologue  |g 1 --  |g 2  |t Geometry Parameterization: Philosophy and Practice  |g 7 --  |g 2.1  |t A Sense of Scale  |g 7 --  |g 2.1.1  |t Separating Shape and Scale  |g 7 --  |g 2.1.2  |t Nondimensional Coefficients  |g 9 --  |g 2.2  |t Parametric Geometries  |g 11 --  |g 2.2.1  |t Pre-Optimization Checks  |g 13 --  |g 2.3  |t What Makes a Good Parametric Geometry: Three Criteria  |g 15 --  |g 2.3.1  |t Conciseness  |g 15 --  |g 2.3.2  |t Robustness  |g 16 --  |g 2.3.3  |t Flexibility  |g 16 --  |g 2.4  |t A Parametric Fuselage: A Case Study in the Trade-Offs of Geometry Optimization  |g 18 --  |g 2.4.1  |t Parametric Cross Sections  |g 18 --  |g 2.4.2  |t fuselage Cross-Section Optimization: An Illustrative Example  |g 22 --  |g 2.4.3  |t A Parametric Three-Dimensional Fuselage  |g 27 --  |g 2.5  |t A General Observation on the Nature of Fixed-Wing Aircraft Geometry Modelling  |g 29 --  |g 2.6  |t Necessary Flexibility  |g 30 --  |g 2.7  |t The Place of a Parametric Geometry in the Design Process  |g 31 --  |g 2.7.1  |t Optimization: A Hierarchy of Objective Functions  |g 31 --  |g 2.7.2  |t Competing Objectives  |g 32 --  |g 2.7.3  |t Optimization Method Selection  |g 35 --  |g 2.7.4  |t Inverse Design  |g 37 --  |g 3  |t Curves  |g 41 --  |g 3.1  |t Conies and Bézier Curves  |g 41 --  |g 3.1.1  |t Projective Geometry Construction of Conies  |g 42 --  |g 3.1.2  |t Parametric Bernstein Conic  |g 43 --  |g 3.1.3  |t Rational Conies and Bézier Curves  |g 49 --  |g 3.1.4  |t Properties of Bézier Curves  |g 50 --  |g 3.2  |t Bezier Splines  |g 51 --  |g 3.3  |t Ferguson's Spline  |g 52 --  |g 3.4  |t B-Splines  |g 57 --  |g 3.5  |t Knots  |g 59 --  |g 3.6  |t Nonuniform Rational Basis Splines  |g 60 --  |g 3.7  |t Implementation in Rhino  |g 64 --  |g 3.8  |t Curves for Optimization  |g 65 --  |g 4  |t Surfaces  |g 67 --  |g 4.1  |t Lofted, Translated and Coons Surfaces  |g 67 --  |g 4.2  |t Beziér Surfaces  |g 69 --  |g 4.3  |t B-Spline and Nonuniform Rational Basis Spline Surfaces  |g 74 --  |g 1.4  |t Tree-Form Deformation  |g 76 --  |g 4.5  |t Implementation in Rhino  |g 82 --  |g 4.5.1  |t Nonuniform Rational Basis Splines-Based Surfaces  |g 82 --  |g 4.5.2  |t Free-Form Deformation  |g 82 --  |g 4.6  |t Surfaces for Optimization  |g 84 --  |g 5  |t Aerofoil Engineering: Fundamentals  |g 91 --  |g 5.1  |t Definitions, Conventions, Taxonomy, Description  |g 91 --  |g 5.2  |t A 'Non-Taxonomy of Aerofoils  |g 92 --  |g 5.2.1  |t Low-Speed Aerofoils  |g 93 --  |g 5.2.2  |t Subsonic Aerofoils  |g 93 --  |g 5.2.3  |t Transonic Aetvfoils  |g 93 --  |g 5.2.4  |t Supersonic Aerofoils  |g 94 --  |g 5.2.5  |t Natural Laminar Plow Aerofoils  |g 94 --  |g 5.2.6  |t Multi-Element Aerofoils  |g 95 --  |g 5.2.7  |t Morphing and Flexible Aerofoils  |g 98 --  |g 5.3  |t Legacy versus Custom-Designed Aerofoils  |g 98 --  |g 5.4  |t Using Legacy Aerofoil Definitions  |g 99 --  |g 5.5  |t Handling Legacy Aerofoils: A Practical Primer  |g 101 --  |g 5.6  |t Aerofoil Families versus Parametric Aerofoils  |g 102 --  |g 6  |t Families of Legacy Aerofoils  |g 103 --  |g 6.1  |t The NACA Four-Digit Section  |g 103 --  |g 6.1.1  |t A One-Variable Thickness Distribution  |g 104 --  |g 6.1.2  |t A Two-Variable Camber Curve  |g 105 --  |g 6.1.3  |t Building the Aerofoil  |g 105 --  |g 6.1.4  |t Nomenclature  |g 106 --  |g 6.1.5  |t A Drawback and Two Fixes  |g 107 --  |g 6.1.6  |t The Distribution of Points: Sampling Density Variations and Cusps  |g 107 --  |g 6.1.7  |t A MATLAB® Implementation  |g 109 --  |g 6.1.8  |t An OpenNURBS/Rhino-Python Implementation  |g 111 --  |g 6.1.9  |t Applications  |g 112 --  |g 6.2  |t The NACA Five-Digit Section  |g 113 --  |g 6.2.1  |t A Three Variable Camber Curve  |g 113 --  |g 6.2.2  |t Nomenclature and Implementation 1  |g 16 --  |g 6.3  |t The NACA SC Families  |g 118 --  |g 6.3.1  |t SC(2)  |g 118 --  |g 7  |t Aerofoil Parameterization  |g 123 --  |g 7.1  |t Complex Transforms  |g 123 --  |g 7.1.1  |t The Joukvwski Aerofoil  |g 124 --  |g 7.2  |t Can a Pair of Ferguson Splines Represent an Aerofoil?  |g 125 --  |g 7.2.1  |t A Simple Parametric Aerofoil  |g 125 --  |g 7.3  |t Kulfan's Class- and Shape-Function Transformation  |g 127 --  |g 7.3.1  |t A Generic Aerofoil  |g 128 --  |g 7.3.2  |t Transforming a Legacy Aerofoil  |g 130 --  |g 7.3.3  |t Approximation Accuracy  |g 132 --  |g 7.3.4  |t The Kulfan Transform as a Filter  |g 135 --  |g 7.3.5  |t Computational Implementation  |g 137 --  |g 7.3.6  |t Class- and Shape-Fund ion Transformation in Optimization: Global versus Local Search  |g 139 --  |g 7.5.7  |t Capturing the Shared Features of a Family of Aerofoils  |g 140 --  |g 7.4  |t Oilier Formulations: Past, Present and Future  |g 142 --  |g 8  |t Planforrn Parameterization  |g 145 --  |g 8.1  |t The Aspect Ratio  |g 145 --  |g 8.1.1  |t Induced Drag  |g 148 --  |g 8.1.2  |t Structural Efficiency  |g 150 --  |g 8.1.3  |t Airport Compatibility  |g 150 --  |g 8.1.4  |t Handling  |g 151 --  |g 8.2  |t The Taper Ratio  |g 352 --  |g 8.3  |t Sweep  |g 153 --  |g 8.3.1  |t Terminology  |g 153 --  |g 8.3.2  |t Sweep in Transonic Flight  |g 155 --  |g 8.3.3  |t Sweep in Supersonic Flight  |g 157 --  |g 8.3.4  |t Forward Sweep  |g 158 --  |g 8.3.5  |t Variable Sweep  |g 159 --  |g 8.3.6  |t Swept Wing 'Growth'  |g 161 --  |g 8.4  |t Wing Area  |g 162 --  |g 8.4.1  |t Constraints on the Wing Area  |g 162 --  |g 8.5  |t Planforrn Definition  |g 167 --  |g 8.5.1  |t From Sketch to Geometry  |g 167 --  |g 8.5.2  |t Introducing Scaling Factors: A Design Heuristic and a Simple Example  |g 168 --  |g 8.5.3  |t More Complex Planforms and an Additional Scaling Factor  |g 169 --  |g 8.5.4  |t Spanwise Clxord Variation  |g 171 --  |g 9  |t Three-Dimensional Wing Synthesis  |g 175 --  |g 9.1  |t Fundamental Variables  |g 175 --  |g 9.1.1  |t Twist  |g 175 --  |g 9.1.2  |t Dihedral  |g 176 --  |g 9.2  |t Coordinate Systems  |g 177 --  |g 9.2.1  |t Cartesian Systems  |g 111 --  |g 9.2.2  |t A Wing-Bound, Curvilinear Dimension  |g 181 --  |g 9.3  |t The Synthesis of a Nondimensional Wing  |g 181 --  |g 9.3.1  |t Example: A Blended Box Wing  |g 183 --  |g 9.3.2  |t Example: Parameterization of a Blended Winglet  |g 187 --  |g 9.4  |t Wing Geometry Scaling. A Case Study: Design of a Commuter Airliner Wing  |g 189 --  |g 9.5  |t Indirect Wing Geometry Scaling  |g 196 --  |g 10  |t Design Sensitivities  |g 199 --  |g 10.1  |t Analytical and Finite-Difference Sensitivities  |g 199 --  |g 10.2  |t Algorithmic Differentiation  |g 201 --  |g 10.2.1  |t Forward Propagation of Tangents  |g 201 --  |g 10.2.2  |t Reverse Mode  |g 203 --  |g 10.3  |t Example; Differentiating an Aerofoil from Control Points to Lift Coefficient  |g 204 --  |g 10.4  |t Example Inverse Design  |g 212 --  |g 11  |t Basic Aerofoil Analysis: A Worked Example  |g 217 --  |g 11.1  |t Creating the .dat and .in files using Python  |g 218 --  |g 11.2  |t Running XFOIL from Python  |g 219 --  |g 12  |t Human-Powered Aircraft Wing Design: A Case Study in Aerodynamic Shape Optimization  |g 223 --  |g 12.1  |t Constraints  |g 225 --  |g 12.2  |t Planform Design  |g 225 --  |g 12.3  |t Aerofoil Section Design  |g 226 --  |g 12.4  |t Optimization  |g 226 --  |g 12.4.1  |t NACA Four-Digit Wing  |g 227 --  |g 12.4.2  |t Ferguson Spline Wing  |g 229 --  |g 12.5  |t Improving the Design  |g 230 --  |g 13  |t Epilogue: Challenging Topological Prejudice  |g 237 
505 8 |a 2.4.3 A Parametric Three-Dimensional Fuselage2.5 A General Observation on the Nature of Fixed-Wing Aircraft Geometry Modelling; 2.6 Necessary Flexibility; 2.7 The Place of a Parametric Geometry in the Design Process; 2.7.1 Optimization: A Hierarchy of Objective Functions; 2.7.2 Competing Objectives; 2.7.3 Optimization Method Selection; 2.7.4 Inverse Design; 3 Curves; 3.1 Conics and Bézier Curves; 3.1.1 Projective Geometry Construction of Conics; 3.1.2 Parametric Bernstein Conic; 3.1.3 Rational Conics and Bézier Curves; 3.1.4 Properties of Bézier Curves; 3.2 Bézier Splines 
505 8 |a 3.3 Ferguson's Spline3.4 B-Splines; 3.5 Knots; 3.6 Nonuniform Rational Basis Splines; 3.7 Implementation in Rhino; 3.8 Curves for Optimization; 4 Surfaces; 4.1 Lofted, Translated and Coons Surfaces; 4.2 Bézier Surfaces; 4.3 B-Spline and Nonuniform Rational Basis Spline Surfaces; 4.4 Free-Form Deformation; 4.5 Implementation in Rhino; 4.5.1 Nonuniform Rational Basis Splines-Based Surfaces; 4.5.2 Free-Form Deformation; 4.6 Surfaces for Optimization; 5 Aerofoil Engineering: Fundamentals; 5.1 Definitions, Conventions, Taxonomy, Description; 5.2 A 'Non-Taxonomy' of Aerofoils 
505 8 |a 5.2.1 Low-Speed Aerofoils5.2.2 Subsonic Aerofoils; 5.2.3 Transonic Aerofoils; 5.2.4 Supersonic Aerofoils; 5.2.5 Natural Laminar Flow Aerofoils; 5.2.6 Multi-Element Aerofoils; 5.2.7 Morphing and Flexible Aerofoils; 5.3 Legacy versus Custom-Designed Aerofoils; 5.4 Using Legacy Aerofoil Definitions; 5.5 Handling Legacy Aerofoils: A Practical Primer; 5.6 Aerofoil Families versus Parametric Aerofoils; 6 Families of Legacy Aerofoils; 6.1 The NACA Four-Digit Section; 6.1.1 A One-Variable Thickness Distribution; 6.1.2 A Two-Variable Camber Curve; 6.1.3 Building the Aerofoil; 6.1.4 Nomenclature 
505 8 |a 6.1.5 A Drawback and Two Fixes6.1.6 The Distribution of Points: Sampling Density Variations and Cusps; 6.1.7 A MATLAB® Implementation; 6.1.8 An OpenNURBS/Rhino-Python Implementation; 6.1.9 Applications; 6.2 The NACA Five-Digit Section; 6.2.1 A Three-Variable Camber Curve; 6.2.2 Nomenclature and Implementation; 6.3 The NACA SC Families; 6.3.1 SC(2); 7 Aerofoil Parameterization; 7.1 Complex Transforms; 7.1.1 The Joukowski Aerofoil; 7.2 Can a Pair of Ferguson Splines Represent an Aerofoil?; 7.2.1 A Simple Parametric Aerofoil; 7.3 Kulfan's Class- and Shape-Function Transformation 
506 |a Access restricted by licensing agreement 
506 |a Restricted for use by site license 
520 |a "Optimal aircraft design is impossible without a parametric representation of the geometry of the airframe. We need a mathematical model equipped with a set of controls, or design variables, which generates different candidate airframe shapes in response to changes in the values of these variables. This model's objectives are to be flexible and concise, and capable of yielding a wide range of shapes with a minimum number of design variables. Moreover, the process of converting these variables into aircraft geometries must be robust. Alas, flexibility, conciseness and robustness can seldom be achieved simultaneously. Aircraft Aerodynamic Design: Geometry and Optimization addresses this problem by navigating the subtle trade-offs between the competing objectives of geometry parameterization. It beginswith the fundamentals of geometry-centred aircraft design, followed by a review of the building blocks of computational geometries, the curve and surface formulations at the heart of aircraft geometry. The authors then cover a range of legacy formulations in the build-up towards a discussion of the most flexible shape models used in aerodynamic design (with a focus on lift generating surfaces). The book takes a practical approach and includes MATLAB(r), Python and Rhinoceros(r) code, as well as 'real-life' example case studies. Key features: Covers effective geometry parameterization within the context of design optimization Demonstrates how geometry parameterization is an important element of modern aircraft design Includes code and case studies which enable the reader to apply each theoretical concept either as an aid to understanding or as a building block of their own geometry model Accompanied by a website hosting codes Aircraft Aerodynamic Design: Geometry and Optimization is a practical guide for researchers and practitioners in the aerospace industry, and a reference for graduate and undergraduate students in aircraft design and multidisciplinary design optimization"--  |c Provided by publisher 
588 |a Description based on print version record 
588 0 |a Print version record 
590 |a Access is available to the Yale community 
590 |a Electronic reproduction. Palo Alto, Calif. : ebrary, 2014. Available via World Wide Web. Access may be limited to ebrary affiliated libraries 
596 |a 22 
650 0 |a Aerodynamics 
650 0 |a Airframes 
650 7 |a Aerodynamics  |2 fast 
650 7 |a Airframes  |2 fast 
650 7 |a TECHNOLOGY & ENGINEERING  |x Aeronautics & Astronautics  |2 bisacsh 
650 7 |a TECHNOLOGY & ENGINEERING  |x Engineering (General)  |2 bisacsh 
655 0 |a Electronic books 
700 1 |a Forrester, Alexander I. J.,  |e author 
776 0 8 |i Print version:  |a Sóbester, András  |t Aircraft aerodynamic design : geometry and optimization.  |d Chichester, England : Wiley, c2015   |h xv, 246 pages   |k Aerospace series (Chichester, England)  |z 9780470662571   |w 2014026821 
776 0 8 |i Print version:  |a Sóbester, András  |t Aircraft aerodynamic design : geometry and optimization.  |d Chichester, England : Wiley, c2015  |h xv, 246 pages  |k Aerospace series (Chichester, England)  |z 9780470662571  |w 2014026821 
776 0 8 |i Print version:  |a Sóbester, András  |t Aircraft aerodynamic design : geometry and optimization.  |d Chichester, England : Wiley, c2015  |h xv, 246 pages   |k Aerospace series (Chichester, England)  |z 9780470662571  |w (LCCN) 2014026821 
776 0 8 |i Print version:  |a Sóbester, András  |t Aircraft aerodynamic design : geometry and optimization.  |d Chichester, England : Wiley, ©2015  |h xv, 246 pages  |k Aerospace series (Chichester, England)  |z 9780470662571  |w (LCCN) 2014026821 
797 2 |a ebrary 
830 0 |a Aerospace series (Chichester, England) 
999 1 0 |i 493c8e0d-269b-41ee-a2dd-8d00eabb99c6  |l a10675841  |s US-CST  |m aircraft_aerodynamic_designgeometry_and_optimization_______________________2015_______wileya________________________________________sobester__andras___________________e 
999 1 0 |i 493c8e0d-269b-41ee-a2dd-8d00eabb99c6  |l a13333406  |s US-CST  |m aircraft_aerodynamic_designgeometry_and_optimization_______________________2015_______wileya________________________________________sobester__andras___________________e 
999 1 0 |i 493c8e0d-269b-41ee-a2dd-8d00eabb99c6  |l 12654257  |s US-CTY  |m aircraft_aerodynamic_designgeometry_and_optimization_______________________2015_______wileya________________________________________sobester__andras___________________e 
999 1 0 |i 493c8e0d-269b-41ee-a2dd-8d00eabb99c6  |l 9974031293503681  |s US-PU  |m aircraft_aerodynamic_designgeometry_and_optimization_______________________2015_______wileya________________________________________sobester__andras___________________e 
999 1 1 |l a10675841  |s ISIL:US-CST  |t BKS  |a SUL INTERNET  |b 10675841-1001  |c INTERNET RESOURCE  |d ASIS  |x SUL  |y 10675841-1001  |p UNLOANABLE 
999 1 1 |l a13333406  |s ISIL:US-CST  |t BKS  |a SUL INTERNET  |b 13333406-1001  |c INTERNET RESOURCE  |d ASIS  |x SUL  |y 13333406-1001  |p UNLOANABLE 
999 1 1 |l 12654257  |s ISIL:US-CTY  |t BKS  |a yulint  |c None  |p UNLOANABLE